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The viscoelastic behaviour of crosslinked polymer networks is discussed. Models of the long time relaxation 
based on the retracing of dangling chains are described. It is pointed out that the theories all predict a power 
law time relation for the relaxation behaviour but differ in their predictions of the crosslink density 
dependence of the power law exponent. The experimental data of Chasset and Thirion are examined. It is 
shown that the power law relation works only over a limited time span, with deviations occurring at long 
times and more markedly for more highly crosslinked systems. Furthermore, the validity of time-crosslink 
density superposition for networks is confirmed, thereby precluding an exponent dependent on crosslink 
density in any power law representation of the data. 

(Keywords: crosslinking; networks; viscoelasticity) 

I N T R O D U C T I O N  

In recent years there has been renewed interest in the 
relaxation behaviour of crosslinked polymer networks in 
the terminal region. In particular, several models 1-6 have 
been proposed based on the assumption that the long time 
relaxation is due to 'dangling' chains that are attached to 
the network at only one end. The theories all predict that 
the long time relaxation follows a power law in time but 
differ in their predictions of the crosslink density 
dependence of the power law exponent. These models are 
described in the next section. 

The experimental data generally cited in support  of a 
power law relaxation are taken from studies by Chasset 
and Thirion 7-1~ on dicumyl peroxide crosslinked natural 
rubber, which has been analysed by Dickie and Ferry 12 
using a power law with an exponent dependent on 
crosslink density. However, Chasset and Thirion, who 
also suggest power law behaviour, note that a power law 
representation of their data is valid over only a limited 
time scale. Moreover,  they use a time-crosslink density 
correspondence principle to reduce their data, which is 
supported by Plazek 13 and Arenz ~4, and such a t ime-  
crosslink density reduction is incompatible with a power 
law having an exponent dependent on crosslink density. 
In view of this apparent  conflict, it is desirable to re- 
examine in some detail both the ability of the power law 
to describe the relaxation data and the validity of a t ime-  
crosslink density superposition of the data. This is done 
below. 

T H E O R I E S  

deGennes I has proposed that the viscoelastic relaxation 
of an entangled dangling chain in a crosslinked polymer 

network occurs by a 'retracing' mechanism in which the 
unattached chain end diffuses towards the chain end 
which is attached to the network. This process, which is 
illustrated in Figure 1, is accompanied by the creation of 
an unentangled loop. By calculating the form of the 
probability of an unentangled loop of N segments to be 
PL(N) ~ exp{ -- ~N} and assuming that the time needed to 
form this loop TL is inversely proport ional  to PL(N), 
deGennes obtained the result that N ,~ ~-  1 In TL. He then 
estimated l(t), the number  of segments in the unentangled 
loop that has formed at time t during retracing, by 
replacing N and T L with l and t respectively, so that 
l(t),.~ ~ -  1 In t. Finally, deGennes assumed that the stress 
contribution of a dangling chain of N segments is 
proport ional  to the number of segments that have not 
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Figure 1 The retracing mechanism of dangling chain relaxation: (a) the 
unentangled loop formation which accompanies retracing and is the 
focus of some theoretical treatments1-4; (b) the various discrete 
entanglements occurring along the chain contour, which become 
successively disentangled during retracing and are the focus of one of the 
theoretical models 6 

0032-3861/88/112027-06503.00 
© 1988 Butterworth & Co. (Publishers) Ltd. POLYMER, 1 988, VOI 29, November  2027  



Relaxation of crosslinked networks: G. B. McKenna and R. J. Gaylord 

been retraced, so 

a(t)do~N--l(t) (1) 

Curro and Pincus 2 append to the deGennes model the 
distribution of dangling chain lengths in a randomly 
crosslinked network, so that 

~(t)cp"~ ~ [N -/(t)] W(N) 
N = I  

oo 

,,~ f ( N -  l)W(N)dN 
I 

(2) 

. , .exp[-ql(t)] 

where W(N) ~ q(1 - q)U- 1 ~ qe-qN is the probability of 
having an N-segment dangling chain and q is the 
probability of a segment being crosslinked, which is 
obviously given by the ratio of crosslink density to 
segment density, v/p. Using the deGennes l(t) relation, 
they get 

a ( t ) c p  ~ e x p [ -  q(ln t)/~] 

~ exp[ln(t-q/')] (3) 

where a = (~p)- 1. An alternative definition of a in the CP 
model has also been given by Curro et al. 3 as 
a=Ne(~p) -1, where N, is the average number of 
monomer units between entanglements and is taken to be 
independent of crosslink density. 

Thirion and Monnerie 4 have recently modified the 
deGennes~urro-Pincus analysis. Using the unen- 
tangled loop probability function calculated by Helfand 
and Pearson 5, Thirion and Monnerie follow the 
deGennes analysis I and obtain t~(l/Ne)a/2exp{fll/N~}, 
where fl = ½1n[z2/4(z- 1)] and z is the lattice coordination 
number. Then, carrying out the Curro-Pincus 
polydispersity calculation 2, they obtain equation (3), with 
a = N~/fl. They also assume that Are ~ d 2 and d,-~ v-1/3, 
where d is the spatial distance between crosslinks so that 
N¢ ~ v- 2/3 and equation (3) becomes 

a(t)rM ~ t-  b , - '  (4) 

where b =f l -  1. 
Rather than using the equilibrium configurational 

statistics of an unentangled loop to estimate the kinetics 
of retracing, a more direct treatment of the movement of 
the free chain end towards the fixed chain end during 
retracing would be preferable. This has been done in 
terms of a diffusion process by Curro et al. 3 and in terms 
of a random walk process by Gaylord et al. 6 

Curro et al. 3 have calculated 

oo 

a(t)cPH ~ f Nfl t)W(N)dN 
0 

(5) 

whereJ(t) is the average fraction of a dangling chain that 

contributes to stress by virtue of having never been visited 
by the free chain end and is given by 

¼ 

 t)~f (6) 
Xe 

where O(y,t) is the probability density for the penetration 
to y (and no further) of a one-dimensional diffusion 
process in a quadratic potential field, L~ is the 
equilibrium contour length of the dangling chain and xe is 
the root-mean-square tube fluctuation about L~. In their 
model, the free end moves along the primitive path of the 
chain (or along the axis of the tube surrounding the 
chain), pushing out unentangled loops and resulting in a 
decrease in entropy, which is viewed as creating the 
potential in which the free end is diffusing. The resulting 
fit) expression is complex, requiring a numerical 
evaluation of equation (5), but by using approximate 
forms of J(t) in equation (5), they obtain 

0"(t)CPH ~ t -  ~v (7) 

where y = Ne/(pfl) and Ne is taken to be independent of 
crosslink density. 

Gaylord et al. calculate 

N 

J ( t ) ' ~ f ( 1 - Y ) q ( y , t ) d y  
0 

(8) 

where q(y,t) is the probability density for the maximum 
displacement of a one-dimensional continuous-time 
random walk with a pausing-time distribution of the form 
qJ(t)~t -1-~. The physics of this model is depicted in 
Fioure 1. The retracing is viewed as a fractal time process 
which occurs by the movement of the free chain end along 
the chain contour, accompanied by the successive 
dissolution of discrete entanglements at various locations 
along the chain. Each disentanglement is an irreversible 
barrier passage event and ¢,(t) represents the distribution 
of barrier heights due to the differing natures of the 
various entanglements. The quantity 6 lies between 0 and 
1 (3 is expected to be independent of crosslink density, 
swelling and, perhaps, temperature). The resulting 
expression is 

N2t-~ 
fit) ~ - -  (9) r(1-6) 

Calculating 

oo 

0"(t)GWD " ~  f f ( t )W(N)dN 
0 

(lo) 

they obtain 

0"(t)GWD ~ t -  ~ (11 ) 

Equations (3), (4), (7) and (11) all have the same power 
law form, t -m. However, they differ in several ways. 
Equations (3), (4) and (7) are a result of assuming a 
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Table 1 Crosslink density and estimate of  equilibrium modulus ,  
E® = l /J~,  for the relaxation data of Chasset and Thirion 9 and the creep 
data of Dickie and  Ferry 12 on samples of natural  rubber crosslinked 
using dicumyl peroxide (as reported by Dickie and  Ferry 12) 

E®/3 (dyn cm -2) 
Crosslink 
density, v Dickie Chasset  Ratio 

Sample (mol crn-  3) and  Ferry12 and Thirion 9 D - F  :C-T 

F 4.6 x 10 -5 1.91 × 106 1.95 × 106 0.98 
G 6.2 x 10- 5 2.24 × 106 2.57 × 106 0.87 
H 8.0 x 10 - s  2.63 x 106 3.24 × 106 0.81 
I 1.20 x 10- 4 3.72 x 106 4.47 × 106 0.83 
J 1.69 x 10-4 4.79 x 106 5.62 × 106 0.85 

1.6x105s. Crosslink densities were determined by 
swelling in benzene. Their sample designations and 
crosslink densities are shown in Table 1. 

Chasset and Thirion treated their data as follows: they 
first assumed that the relaxation response can be 
expressed as the product of a time dependent term and a 
strain dependent term. Also, because the system is a 
network they assumed that there exists an equilibrium 
response E~. The relaxation modulus E(t) can be 
expressed as: 

E(t) = E~o[1 + r(t)] (12) 
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Figure 2 Transient response r ( t )=E( t ) /E®-I  versus log time as 
reported by Thirion and Chasset  9 for natural  rubber and SBR 
crosslinked with dicumyl peroxide; T = 3 0 ° C  

polydispersity of dangling chain lengths due to randomly 
crosslinking the network; different types of polydispersity 
will result in other forms. Equation (11) always has a 
power law form, irrespective of the distribution of 
dangling chain lengths. Additionally, the power law 
exponents in equations (3), (4) and (7) are functions of the 
crosslink density, while the exponent in equation (11) is 
not explicitly related to crosslink density. 

ANALYSIS OF THE RELAXATION DATA 

The data of Chasset and Thirion 
Chasset and Thirion 7-1 t carried out stress relaxation 

experiments in uniaxial extension on natural rubber 
crosslinked with dicumyl peroxide. The crosslink density 
was changed by varying the time of cure of networks 
containing 3.5% dicumyl peroxide. The tests were 
performed at 30°C and an elongation of 2= 1.5. They 
report relaxation data from approximately 3 to 

where r(t) is the transient term. Chasset and Thirion 
reported values for r(t)={[E(t)/E®]- 1} versus log t. 
Their results for natural rubber and styrene-butadiene 
rubber (SBR) are reproduced in Figure 2. They observed 
that a possible representation for r(t) was a power law in 
time. Then equation (12) can be rewritten as 

E(t) = Eoo[1 + (t/to)-"] (13) 

However, Chasset and Thirion 7-~1 specifically note a'9 
that 'deviations [from the power law behaviour-] are often 
observed at long times'. This is clearly seen in the Chasset 
and Thirion 8'9 curves of the first derivative 
approximations to the spectrum hi (z) associated with the 
transient term r(t), which are shown in Figure 3. If the 
behaviour of r(t) were truly a power law in time, then 
log(hl)~-log[dr(t)/dlogt] versus log t would follow a 
straight line of slope - m  for each set of data. While this is 
approximately true over several decades of time, the 
deviations from linearity at long times are quite apparent 
and are more pronounced for the more highly crosslinked 
networks. On the other hand, Dickie and Ferry x2 report 
values of m for a power law behaviour of the data of 
Chasset and Thirion for samples F, G and H as well as for 
several systems of their own. Because of these two 
apparently contradictory conclusions, we will examine 
the data treatments used by Chasset and Thirion and by 
Dickie and Ferry. We will also reanalyse the data for the 
natural rubber networks ourselves. 
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Figure 3 Double logarithmic representation of the first derivative 
approximation to the relaxation spectrum versus time for natural  rubber 
and SBR crosslinked with dicumyl peroxide (after Thirion and 
Chasset9); T = 30°C 
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Table  2 R~su~tsfr~mn~nunearleastsquaresregr~ssi~nana~ysis~nstr~ssre~axati~ndata~fThiri~nandChass~t9f~rdicumy~per~xidecr~ss~nk~d 
na tu ra l  rubbe r  

Pa ramete r s  

Regression 1 ° Regress ion 2 b 

Sample  ra t o (s) m t o (s) / ~  

F 0.157_+ 1.3 x 10 -2 9.44 x 10-a_+6.6 x l 0  -4  0 .119+6 .3  x 10 -4  7.13 x 1 0 - a + 6 . 7 x  I0  - s  0 . 9 3 7 _  1.3 x 1 0 - a  
G 0.173_+1.6 x 10 -3  7.41 x 10-4_+7.2 x 10 - s  0.132_+ 1 . 0 x  10 - a  1.89 x 10 -2_+8 .0x  10 -~  0.964___ 1.2 x 10-  a 
H 0.189_+4.3 x 10 -4  1.05 x 10-4_+2.9 x 10 -6 0.185_+ 1.4 x 10 - a  8 . 9 1 x  10-s_+5.9 x 10 -6 0.999_+4.8 x 10 -4  
I 0 . 2 0 5 _  1.19 x 10 -3 8 .70x  1 0 - 6 + 7 . 4  x 10 -7  0.179_+1.5 x 10 -3 1.92 x 1 0 - 6 _ 2 . 0 x  10 -7 0.995_+2.9 x 10-4  
J 0.220_+9.7 x 10 -4  1.69 x 10-6_+ 1.2 x I0  -7  0 .230_3 .3  x 10 -3 1.02 x 10-5_+5.4 x 10 -7 1.001_+2.5 x 10 - a  

a 1 + r ( t ) =  l+(t/to) -m 
1 + r(t) = E~o [ 1 + (tit o)- m] 

The power law interpretation 
The major difficulty involved in determining the actual 

transient response of a crosslinked system is the 
estimation of the value of Eo0. From equation (12) we can 
see that as r(t) approaches zero (or E(t)/E~o approaches 
unity) a small error in E~o can lead to a large error in r(t). 
Dickie and Ferry ~2 actually treat E® as a floating 
parameter to force the data to fit a power law of the form 
of equation (1). And, in fact, their estimates of E~ for the 
Chasset-Thirion data differ significantly from those 
reported by Chasset and Thirion. The differences can be 
seen in Table 1 by comparing the values of modulus (as 
E~ =3/Jo~) reported by Dickie and Ferry 12 from creep 
with those of Chasset and Thirion from stress relaxation. 

We now turn to the question of the magnitude of the 
power law exponent m as a function of crosslink density. 
If we assume that r(t)=(t/to) -m, we can carry out 
nonlinear least squares fits to the Chasset and Thirion 
data to obtain m. We have done the analysis on data 
obtained by digitizing the curves for the natural rubber 
samples F to J on a photographic enlargement of the 
Thirion~:~hasset published version of Figure 2. We 
examine two approaches: first, the Chasset and Thirion 
estimate of Eoo is used. Second, the value of Eo~ is allowed 
to 'float' in the regression analysis. The values of m 
obtained by both methods are shown in Table 2. Also 
shown are the values of the normalized equilibrium 
modulus /~o~ obtained for fits of the second type. The 
trend of m with crosslink density is shown in Figure 4. 
There are three important things to note in Table 2 and 
Figure 4. First, the value of m obtained from the curve 
fitting procedure is very sensitive to the value of E~, e.g. 
for a 4% change in E~ (/~oo=0.964) for sample G, m 
changes by 30%. Second, the accuracy of the 
determination of crosslink density, v=p/Mc, based on 
swelling measurements by Thirion and Chasset is itself 
uncertain. Third, unlike the representation of m versus v 
given by Curro and Pincus (who only consider data for 
the three lowest crosslink density samples F, G and H), m 
is either not a linear function of v and/or has an 
extrapolated non-zero value at zero crosslink density (see 
Figure 4). Finally, we note that the values of m obtained 
from this analysis of the Chasset and Thirion data are 
greater than those obtained by Dickie and Ferry. We can 
obtain values similar to theirs by using specific values of 
/~oo corresponding to the differences between the Eoo 
values of Dickie and Ferry and those of Chasset and 
Thirion shown in Table 2. 
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Figure 4 P o w e r  law exponen t  m versus cross l ink  densi ty  for d a t a  of  
Chasse t  and  Th i r ion  9 reanalysed as descr ibed in text:  O ,  a ssuming  
l+r(t)= 1 + (t/to)-m; × ,  a s suming  l+r(t)=E=[1 +(t/to) -~'] 

Time-crosslink density superposition 
Thirion and Chasset a'9'x i remarked that the curves for 

r(t) at different crosslink densities could be superimposed 
onto a single reduced curve by a simple shift along the 
time axis. Such a time-crosslink density correspondence 
principle was also found by Arenz 14 and by Plazek 13 for 
crosslinked rubbers. If a time-crosslink density 
superposition principle is valid for networks, there are 
two important observations to be made. First, the shape 
of the relaxation spectrum (function) will be independent 
of crosslink density, only shifting along the time axis when 
crosslink density changes. Thus equation (12) can be 
rewritten as: 

E(t/a,) = Eoo(v)[1 + r(t/av)] (14) 
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Table 3 Parameters used to perform time-crosslink density 
superposition of Thirion and  Chasset  9 relaxation data for dicumyl 
peroxide crosslinked natural  rubber 

Sample Ar~ log a, 

F 0 0 
G - 0.0073 - 1.672 
H -0 .0105  - 3 . 1 1 6  
I - 0.0064 - 4.580 
J - 0.0068 - 5.800 

where v is the crosslink density and a v is the crosslink 
density shift factor. Second, if the relaxation function is a 
power law in time, then time--crosslink density 
correspondence requires that m be independent of 
crosslink density (which agrees with the more or less 
parallel nature of the linear portions of the curves in 
Figure 3). A power law representation of data from 
isothermal experiments on differently crosslinked 
networks may, however, give an apparent dependence of 
m on v, which, moreover, would then depend on 
temperature. 

We can now demonstrate the time-crosslink density 
superposition of the Chasset-Thirion a'9 data and show 
how the results vary from a power law. Before presenting 
the reduced data, we note that the data shown in Figure 2 
and the spectra shown in Figure 3 are only approximately 
superimposable by simple shifts along the time axis. 
However, as we show below, the data for r(t) (Figure 2) 
can be superimposed very well using corrections of less 
than 1.1% in the value of Eoo assumed by Chasset and 
Thirion. The superposition was applied by making very 
small vertical shifts of an amount Arv on the plots of r(t) 
versus log t and then performing the shift along the time 
axis. This amounts to an error in Eoo, which is reasonable 
since E~ is an estimated parameter. Furthermore, as seen 
in Fi#ure 2, the values of r(t) for samples I and J approach 
a finite non-zero constant value. This value should be 
very close to the equilibrium value, i.e. when r(t)= 0. In 
Table 3 we show the vertical shift in r(t) as Ar~ and the 
horizontal shifts in log (t) as log a~, using sample F as the 
reference. Note that the largest correction to E~o, i.e. the 
vertical shift, is for sample H and is less than 1.1% 
(Arv=-0.0105). We also note that these small 
corrections to E~ result in a much larger relative 
correction to r(t) as it approaches zero. Figure 5 depicts a 
double logarithmic representation of the reduced or 
master curve obtained from these shifts. We now see that 
the possibility of a power law, which would be a straight 
line with slope - m  in Figure 5, exists only over a limited 
time range*. 

In fact, the existence of a time-crosslink density 
correspondence emphatically argues against a power law 
relaxation function which is dependent on crosslink 

* Our  shifts are different from those obtained by Plazek 1 a from creep 
measurements  on the same materials. Both Plazek 13 and Dickie and 
Ferry ~2 reported values of E~ (or J® = 1/G=). As noted in the text, this 
has a large effect on the value of r(t) at long times. Although the Plazek 
results for r(t) differ quantitatively from those reported here, they are 
qualitatively the same, i.e. power law behaviour is not  observed. The 
shifts which we obtain are similar to those reported by Thirion and 
Chasset  8'9,11 while Plazek ~ a and Arenz ~4 obtain higher values in their 
experiments. This is simply indicative of the difficulty of  obtaining a 
good estimate of E® (or J~ )  and,  therefore, an accurate portrayal of the 
transient response of rubber. 
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Figure 5 Double logarithmic representation of the reduced relaxation 
function r( t /a~)+Ar v versus t/a~ for the Thirion--Chasset 9 stress 
relaxation data  for dicumyl peroxide crosslinked natural  rubber: D ,  
sample F;  O ,  sample G; ~ ,  sample H; + ,  sample I; O ,  sample J 

density. Rather, because the reduced function shown in 
Figure 5 is sampled experimentally in different regions for 
different crosslink densities, the apparent crosslink 
density dependence of the power law exponent is simply a 
result of taking the data isothermally, rather than in an 
'iso-corresponding state' manner. Thus one would expect 
the apparent dependence ofm on crosslink density to vary 
with temperature. 

CONCLUSION 

The experimental data on the relaxation of crosslinked 
networks gives only limited support to power law time 
behaviour. Deviations from power law behaviour occur 
at long times and are more pronounced at higher 
crosslink densities. (It should be emphasized that small 
changes in the estimate of E~o have the largest effect on 
long time relaxation behaviour, which may explain, at 
least partially, the deviation from power law behaviour 
seen in Figure 5). Moreover, any power law 
representation of the relaxation behaviour must have an 
exponent that is independent of crosslink density in order 
to be compatible with a time--crosslink density 
correspondence. 

A final point which needs to be raised is the following: 
In addition to the validity of a time-crosslink density 
correspondence principle for rubber networks, other 
investigators have observed that time-swelling 8"9 and 
time-temperature s'9'13 correspondence principles are 
also valid for crosslinked networks. An important 
question then arises: why is the shape of the terminal 
region of the relaxation spectrum in crosslinked rubber 
independent of temperature, swelling and crosslink 
density, so that these parameters act only to change the 
position in time at which the relaxation occurs? 
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